Skip to main content

W&B Weave Self-managed

This install guide outlines the process of deploying all the components necessary to enable W&B Weave in a self-managed environment.

important

Weave on self-managed is currently in Private Preview (PrPr). To deploy a fully production grade instance, please email support@wandb.com. W&B strongly recommends using the W&B Dedicated Cloud option where Weave is Generally Available for production environments.

One of the key components required to deploy W&B Weave is the ClickHouseDB used by Weave application backend.

While the deployment results in a fully functional ClickHouseDB installation, there may be additional measures needed to improve reliability and availability in a fully production-ready environment.

Requirements

  • W&B Platform installed. For more information, see the Self-Managed Deployment Guide
  • Bitnami's ClickHouse Helm Chart
  • An S3 bucket pre-configured for ClickHouse storage. For configuration details, see Provide S3 Credentials
  • Kubernetes Cluster Nodes with the following specifications:
    • CPU: 8 cores
    • RAM: 64 GB
    • Disk: 200GB+
  • A Weave-enabled license from W&B. To request a license, please reach out to support@wandb.com.
tip

For a more detailed reference architecture, see https://docs.wandb.ai/guides/hosting/self-managed/ref-arch/.

Deploy ClickHouse

The ClickHouse deployment in this document uses the Bitnami ClickHouse package.

The Bitnami Helm chart provides good support for basic ClickHouse functionalities, particularly the use of ClickHouse Keeper.

Configure Helm repository

  1. Add the Bitnami Helm repository:

    helm repo add bitnami https://charts.bitnami.com/bitnami

  2. Update the repository:

    helm repo update

Create Helm Configuration

The most critical part of the Helm configuration is the ClickHouse configuration, which is provided in XML format. Below is an example values.yaml file with customizable parameters to suit your needs. To make the configuration process easier, we have added comments in the relevant sections using the format <!-- COMMENT -->.

Modify the following parameters:

  • clusterName
  • auth.username
  • auth.password
  • S3 bucket-related configurations
# Stable version
image:
registry: docker.io
repository: bitnami/clickhouse
tag: 24.8

## @param clusterName ClickHouse cluster name
clusterName: cluster_1S_3R

## @param shards Number of ClickHouse shards to deploy
shards: 1

## @param replicaCount Number of ClickHouse replicas per shard to deploy
## if keeper enable, same as keeper count, keeper cluster by shards.
replicaCount: 3
persistence:
enabled: false


## ClickHouse resource requests and limits
resources:
requests:
cpu: 0.5
memory: 500Mi
limits:
cpu: 3.0
memory: 6Gi

## Authentication
auth:
username: weave_admin
password: "weave_123"
existingSecret: ""
existingSecretKey: ""


## @param logLevel Logging level
logLevel: information

## @section ClickHouse keeper configuration parameters
keeper:
enabled: true

## @param defaultConfigurationOverrides [string] Default configuration overrides (evaluated as a template)
defaultConfigurationOverrides: |
<clickhouse>
<!-- Macros -->
<macros>
<shard from_env="CLICKHOUSE_SHARD_ID"></shard>
<replica from_env="CLICKHOUSE_REPLICA_ID"></replica>
</macros>
<!-- Log Level -->
<logger>
<level>{{ .Values.logLevel }}</level>
</logger>
{{- if or (ne (int .Values.shards) 1) (ne (int .Values.replicaCount) 1)}}
<remote_servers>
<{{ .Values.clusterName }}>
{{- $shards := $.Values.shards | int }}
{{- range $shard, $e := until $shards }}
<shard>
<internal_replication>true</internal_replication>
{{- $replicas := $.Values.replicaCount | int }}
{{- range $i, $_e := until $replicas }}
<replica>
<host>{{ printf "%s-shard%d-%d.%s.%s.svc.%s" (include "common.names.fullname" $ ) $shard $i (include "clickhouse.headlessServiceName" $) (include "common.names.namespace" $) $.Values.clusterDomain }}</host>
<port>{{ $.Values.service.ports.tcp }}</port>
</replica>
{{- end }}
</shard>
{{- end }}
</{{ .Values.clusterName }}>
</remote_servers>
{{- end }}
{{- if .Values.keeper.enabled }}
<keeper_server>
<tcp_port>{{ $.Values.containerPorts.keeper }}</tcp_port>
{{- if .Values.tls.enabled }}
<tcp_port_secure>{{ $.Values.containerPorts.keeperSecure }}</tcp_port_secure>
{{- end }}
<server_id from_env="KEEPER_SERVER_ID"></server_id>
<log_storage_path>/bitnami/clickhouse/keeper/coordination/log</log_storage_path>
<snapshot_storage_path>/bitnami/clickhouse/keeper/coordination/snapshots</snapshot_storage_path>
<coordination_settings>
<operation_timeout_ms>10000</operation_timeout_ms>
<session_timeout_ms>30000</session_timeout_ms>
<raft_logs_level>trace</raft_logs_level>
</coordination_settings>
<raft_configuration>
{{- $nodes := .Values.replicaCount | int }}
{{- range $node, $e := until $nodes }}
<server>
<id>{{ $node | int }}</id>
<hostname from_env="{{ printf "KEEPER_NODE_%d" $node }}"></hostname>
<port>{{ $.Values.service.ports.keeperInter }}</port>
</server>
{{- end }}
</raft_configuration>
</keeper_server>
{{- end }}
{{- if or .Values.keeper.enabled .Values.zookeeper.enabled .Values.externalZookeeper.servers }}
<zookeeper>
{{- if or .Values.keeper.enabled }}
{{- $nodes := .Values.replicaCount | int }}
{{- range $node, $e := until $nodes }}
<node>
<host from_env="{{ printf "KEEPER_NODE_%d" $node }}"></host>
<port>{{ $.Values.service.ports.keeper }}</port>
</node>
{{- end }}
{{- else if .Values.zookeeper.enabled }}
{{- $nodes := .Values.zookeeper.replicaCount | int }}
{{- range $node, $e := until $nodes }}
<node>
<host from_env="{{ printf "KEEPER_NODE_%d" $node }}"></host>
<port>{{ $.Values.zookeeper.service.ports.client }}</port>
</node>
{{- end }}
{{- else if .Values.externalZookeeper.servers }}
{{- range $node :=.Values.externalZookeeper.servers }}
<node>
<host>{{ $node }}</host>
<port>{{ $.Values.externalZookeeper.port }}</port>
</node>
{{- end }}
{{- end }}
</zookeeper>
{{- end }}
{{- if .Values.metrics.enabled }}
<prometheus>
<endpoint>/metrics</endpoint>
<port from_env="CLICKHOUSE_METRICS_PORT"></port>
<metrics>true</metrics>
<events>true</events>
<asynchronous_metrics>true</asynchronous_metrics>
</prometheus>
{{- end }}
<storage_configuration>
<disks>
<s3_disk>
<type>s3</type>
<!-- MODIFY THE BUCKET NAME -->
<endpoint>https://s3.us-east-1.amazonaws.com/bucketname/foldername</endpoint>
<!-- MODIFY THE BUCKET NAME -->

<!-- AVOID USE CREDENTIALS CHECK THE RECOMMENDATION -->
<access_key_id>xxx</access_key_id>
<secret_access_key>xxx</secret_access_key>
<!-- AVOID USE CREDENTIALS CHECK THE RECOMMENDATION -->

<metadata_path>/var/lib/clickhouse/disks/s3_disk/</metadata_path>
</s3_disk>
<s3_disk_cache>
<type>cache</type>
<disk>s3_disk</disk>
<path>/var/lib/clickhouse/s3_disk_cache/cache/</path>
<max_size>100Gi</max_size>
<cache_on_write_operations>1</cache_on_write_operations>
<enable_filesystem_cache_on_write_operations>1</enable_filesystem_cache_on_write_operations>
</s3_disk_cache>
</disks>
<policies>
<s3_main>
<volumes>
<main>
<disk>s3_disk_cache</disk>
</main>
</volumes>
</s3_main>
</policies>
</storage_configuration>
<merge_tree>
<storage_policy>s3_main</storage_policy>
</merge_tree>
</clickhouse>

## @section Zookeeper subchart parameters
zookeeper:
enabled: false

Provide S3 Credentials

You can specify credentials for accessing an S3 bucket by either hardcoding the configuration, or having ClickHouse fetch the data from environment variables or an EC2 instance:

Hardcode the configuration

Directly include the credentials in the storage configuration:

<type>s3</type>
<endpoint>https://s3.us-east-1.amazonaws.com/bucketname/foldername</endpoint>
<access_key_id>xxx</access_key_id>
<secret_access_key>xxx</secret_access_key>

Use environment variables or EC2 Metadata

Instead of hardcoding credentials, you can enable ClickHouse to fetch them dynamically from environment variables or Amazon EC2 instance metadata.

<use_environment_credentials>true</use_environment_credentials>

You can find more details on this at ClickHouse: Separation of Storage and Compute.

Install ClickHouse

important

If you do not wish to create a new namespace or install ClickHouse in a specific namespace, omit the arguments --create-namespace --namespace <NAMESPACE>.

With the repositories set up and the values.yaml file prepared, the next step is to deploy ClickHouse.

helm install --create-namespace --namespace <NAMESPACE> clickhouse bitnami/clickhouse -f values.yaml 

Confirm ClickHouse deployment

Confirm that ClickHouse is deployed using the following command:

kubectl get pods -n <NAMESPACE>

Deploy Weave

Weave is already available for automatic deployment via W&B Operator. With the W&B Platform installed, the next steps would be as follows:

  1. Edit the CR instance used to deploy the platform.
  2. Add the Weave configuration.

Gather information

  1. Use Kubernetes service details to configure Weave tracing:
  • Endpoint: <release-name>-headless.<namespace>.svc.cluster.local
    • Replace <release-name> with your Helm release name
    • Replace <namespace> with your NAMESPACE
    • Get the service details: kubectl get svc -n <namespace>
  • Username: Set in the values.yaml
  • Password: Set in the values.yaml
  1. With this information, update the W&B Platform Custom Resource(CR) by adding the following configuration:

    apiVersion: apps.wandb.com/v1
    kind: WeightsAndBiases
    metadata:
    labels:
    app.kubernetes.io/name: weightsandbiases
    app.kubernetes.io/instance: wandb
    name: wandb
    namespace: default
    spec:
    values:
    global:
    [...]
    clickhouse:
    host: <release-name>-headless.<namespace>.svc.cluster.local
    port: 8123
    password: <password>
    user: <username>
    database: wandb_weave

    weave-trace:
    enabled: true
    [...]
    weave-trace:
    install: true
    [...]

The final configuration may look like the example below:

apiVersion: apps.wandb.com/v1
kind: WeightsAndBiases
metadata:
labels:
app.kubernetes.io/name: weightsandbiases
app.kubernetes.io/instance: wandb
name: wandb
namespace: default
spec:
values:
global:
license: eyJhbGnUzaHgyQjQyQWhEU3...ZieKQ2x5GGfw
host: https://abc-wandb.sandbox-gcp.wandb.ml

bucket:
name: abc-wandb-moving-pipefish
provider: gcs

mysql:
database: wandb_local
host: 10.218.0.2
name: wandb_local
password: 8wtX6cJHizAZvYScjDzZcUarK4zZGjpV
port: 3306
user: wandb

clickhouse:
host: <release-name>-headless.<namespace>.svc.cluster.local
port: 8123
password: <password>
user: <username>
database: wandb_weave

weave-trace:
enabled: true

ingress:
annotations:
ingress.gcp.kubernetes.io/pre-shared-cert: abc-wandb-cert-creative-puma
kubernetes.io/ingress.class: gce
kubernetes.io/ingress.global-static-ip-name: abc-wandb-operator-address

weave-trace:
install: true
  1. With the Custom Resource (CR) prepared, apply the new configuration:

    kubectl apply -n <NAMESPACE> -f wandb.yaml